Answer:
![55^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/f5ce9dlb01a1yf0h1boetpvvlp1lpb0yc1.png)
Step-by-step explanation:
Since, The angle subtended at the center of a circle is double the size of the angle subtended at the edge from the same two points,
Therefore,
![\angle AOB=2\angle ADB](https://img.qammunity.org/2019/formulas/mathematics/high-school/103c84crdbz7o8s4zscdmudx144rghvg9c.png)
![\implies\angle ADB=(\angle AOB)/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/iq4cmw1fh3c69pzwyv8l8w6mhxcqovhdjd.png)
But,
![\angle AOB=42^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/g9aee1cn47y2crfrt1zse20te2t320631u.png)
Therefore,
![\angle ADB=21^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/b2th3yklt0cngo410iwse3z6g4q7csrahg.png)
Similarly,
( because, it is given that,
)
Since,
is the exterior angle of
![\triangle AED](https://img.qammunity.org/2019/formulas/mathematics/high-school/27m6602lsvxegsl7m80ew4a44xa29whgs2.png)
Thus,
![\angle DEC=\angle CAD+\angle ADB=34^(\circ)+21^(\circ)=55^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/dgzq3cq3jcl2svwftbslb4wbcyx8oqesxp.png)
⇒
![\angle DEC=55^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/high-school/9qhqz85hlcijsz29pbzedjicwvc7lvzmug.png)