Try this solution:
Part A: note, that tanx=1/ contanx. Using this property and formula 1+contan²x=1/ sin²x, it is possible to find sinx:
![sinx= \sqrt { (1)/(1+ctg^2x)}=\sqrt{(1)/(1+(144)/(25))}= (5)/(13)](https://img.qammunity.org/2019/formulas/mathematics/college/ez58xnbdatim7yhiirtehn83nx8t8wehcb.png)
Part B: if tanx=5/12, then using the formula 1+tan²x=1/cos²x it is possible to find cosx:
![cosx=\sqrt{(1)/(1+tan^2x)}=\sqrt{(1)/(1+(25)/(144))}=(12)/(13).](https://img.qammunity.org/2019/formulas/mathematics/college/ohpze9r9wkil2jqu8exqu6e8g59nbmba44.png)
Part C: note, that sin(x+2pi/3)=sinx*cos2pi/3+sin2pi/3*cosx=-0.5sinx+√3/2cosx, where sinx=5/13 and cosx=12/13.
![sin(x+(2 \pi)/(3))=(√(3))/(2) *(12)/(13)-(1)/(2) *(5)/(13)=(12√(3)-5)/(26)](https://img.qammunity.org/2019/formulas/mathematics/college/bh9zcxb32rygvb664nzorhnuf2c9rm0f5i.png)