178k views
1 vote
Find dy/dx when y = Ln (sinh 2x). A. 2 cosh 2x B. 2 sech 2x C. 2 coth 2x D. 2 csch 2x

User Liam Flynn
by
5.0k points

1 Answer

0 votes
The function given is a composite function. Let's work from the outside in:

y=(ln(sinh(2x)))

First step:

(d)/(dx)[y]= (d)/(dx)[ln(sinh(2x))]

Now, let's work it out:

(dy)/(dx) = (1)/(sinh(2x) ) * (d)/(dx)[sinh(2x)]

Next step:

(dy)/(dx) = (1)/(sinh(2x) ) * cosh(2x) * (d)/(dx)[2x]

Next step:

(dy)/(dx) = (1)/(sinh(2x) ) * cosh(2x) *2

Simplify:

(dy)/(dx) = (2cosh(2x))/(sinh(2x) )

Simplify further:

(dy)/(dx) = 2 ((cosh(2x))/(sinh(2x)))

Remember that:

{(cosh(x))/(sinh(x)) = coth(x)

So, your final answer is:

\boxed{ (dy)/(dx) = 2coth(2x) }

So, your answer is C. Hope I could help you!
User Radim Burget
by
5.5k points