The function given is a composite function. Let's work from the outside in:
![y=(ln(sinh(2x)))](https://img.qammunity.org/2019/formulas/mathematics/high-school/re0862cc8zj50l8naecsjxw9zqqethuq0w.png)
First step:
![(d)/(dx)[y]= (d)/(dx)[ln(sinh(2x))]](https://img.qammunity.org/2019/formulas/mathematics/high-school/x6yl6qurk3ihrh7vtcwe05e0ut9f72gv2t.png)
Now, let's work it out:
![(dy)/(dx) = (1)/(sinh(2x) ) * (d)/(dx)[sinh(2x)]](https://img.qammunity.org/2019/formulas/mathematics/high-school/i31rzsjfqogxtdsx4sqtw9wm75vxuthvgi.png)
Next step:
![(dy)/(dx) = (1)/(sinh(2x) ) * cosh(2x) * (d)/(dx)[2x]](https://img.qammunity.org/2019/formulas/mathematics/high-school/81258mehtkdwl5cyu9avtwifgzvpkaz389.png)
Next step:
![(dy)/(dx) = (1)/(sinh(2x) ) * cosh(2x) *2](https://img.qammunity.org/2019/formulas/mathematics/high-school/vt2w6swiyxurgyabxh5l4tzeuzqd37b5qt.png)
Simplify:
![(dy)/(dx) = (2cosh(2x))/(sinh(2x) )](https://img.qammunity.org/2019/formulas/mathematics/high-school/8bo0ahmbd4wzo6e00e4l2xyhpr9fxk62ut.png)
Simplify further:
![(dy)/(dx) = 2 ((cosh(2x))/(sinh(2x)))](https://img.qammunity.org/2019/formulas/mathematics/high-school/w93t0fdpuknvtcbwnopyakkfnmgi7el4wr.png)
Remember that:
![{(cosh(x))/(sinh(x)) = coth(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/tel37ezbwolt8i5qmcvzkn6scw8o4qtkoo.png)
So,
your final answer is:![\boxed{ (dy)/(dx) = 2coth(2x) }](https://img.qammunity.org/2019/formulas/mathematics/high-school/dhigr43uksmg23vni192862v1pk5x50o5f.png)
So, your answer is
C. Hope I could help you!