Answer:
Hence, the answer is:
or
![\cot 0=(-8)/(3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7u12s78yznfts51qdidb7i9mwx16l5bv86.png)
Explanation:
We know that the tangent trignometric function and the cotangent trignometric function is given by:
![\tan x=(1)/(\cot x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ozfpu3gitc1z42cb0y7hh69ero1kqdoxzy.png)
i.e. the tangent function and the cotangent function are inverse of each other.
We are given tangent of an angle O as:
![\tan 0=(-3)/(8)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7i6r9cmybl5fm4y2rb9c1sq1omae550wk8.png)
Hence, we have:
![\cot O=(1)/(\tan O)\\\\i.e.\\\\\cot O=(1)/((-3)/(8))\\\\i.e.\\\\\cot O=(8)/(-3)\\\\i.e.\\\\\cot 0=(-8)/(3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2auxt5vy2p2gkf60ocvghc6msb8lv4w8f5.png)