Between the probability of union and intersection, it's not clear what you're supposed to compute. (I would guess it's the probability of union.) But we do know that
![P(A\cup B)+P(A\cap B)=P(A)+P(B)](https://img.qammunity.org/2019/formulas/mathematics/college/l9h6e49vda1us5szg73xtiu8joedyldhz5.png)
For parts (a) and (b), you're given everything you need to determine
![P(B)](https://img.qammunity.org/2019/formulas/mathematics/college/5i7q2vjq7sq3ng10wa8iy74rxal1db7tzc.png)
.
For part (c), if
![A](https://img.qammunity.org/2019/formulas/mathematics/college/k9eyhyc0oq8synfrd8d989siquy6r5rpla.png)
and
![B](https://img.qammunity.org/2019/formulas/mathematics/college/olo9c14ssxz5ak3wo84ow8dtdgnlpgp7vb.png)
are mutually exclusive, then
![P(A\cap B)=0](https://img.qammunity.org/2019/formulas/mathematics/college/zd2iit7rd29r0l80icqmadn2ose2qgtoek.png)
, so
![P(A\cup B)=P(A)+P(B)](https://img.qammunity.org/2019/formulas/mathematics/college/y6jaxg994weez1mjrhxo71om0gq36e1kyw.png)
. If the given probability is
![P(A\cup B)=0.55](https://img.qammunity.org/2019/formulas/mathematics/college/jfhpu9a9jr11ydmtnwgrs6ghw6wfktfsuo.png)
, then you can find
![P(B)=0.15](https://img.qammunity.org/2019/formulas/mathematics/college/jwlwi84u0qhk7vv6jbf9vik93otr7qjby6.png)
. But if this given probability is for the intersection, finding
![P(B)](https://img.qammunity.org/2019/formulas/mathematics/college/5i7q2vjq7sq3ng10wa8iy74rxal1db7tzc.png)
is impossible.
For part (d), if
![A](https://img.qammunity.org/2019/formulas/mathematics/college/k9eyhyc0oq8synfrd8d989siquy6r5rpla.png)
and
![B](https://img.qammunity.org/2019/formulas/mathematics/college/olo9c14ssxz5ak3wo84ow8dtdgnlpgp7vb.png)
are independent, then
![P(A\cap B)=P(A)\cdot P(B)](https://img.qammunity.org/2019/formulas/mathematics/college/bw6u7pqz6gvvyayl5cp5wucrnzxzt0fm7w.png)
.