Answer:
The graph of given function is shown below.
Explanation:
The given function is
![f(x)=(4)/(x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/cp1bv02qz3k4g80fiushokyf12xuiok75g.png)
We need top find the graph of given rational function.
First find the key features of the given function.
1. Vertical asymptote: Equate denominator equal to 0.
![x=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/9kvijf358dstmx6gyc4kvxfk183uebfiu1.png)
The vertical asymptote is x=0.
2. Horizontal asymptote: Find the
to find the horizontal asymptote.
![y=lim_(x\rightarrow \infty)f(x)=lim_(x\rightarrow \infty)(4)/(x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/1ja7j4p4csyttlkda32h4stggpws4356ll.png)
![y=(4)/( \infty)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/rcfea0865zxjyqvz37n3c8g39coupc6pyk.png)
![y=0](https://img.qammunity.org/2019/formulas/mathematics/college/r0jlugcrkk1got8vuljk2uj8h02jl3vmti.png)
The horizontal asymptote is y=0.
3. The graph has vertical asymptote is x=0 and horizontal asymptote is y=0, therefore the graph has no x- and y-intercepts.
4. End behavior:
![f(x)\rightarrow 0\text{ as }x\rightarrow -\infty](https://img.qammunity.org/2019/formulas/mathematics/middle-school/f8zxvoz0leg2nohzw6u9mhx53ehu92eg26.png)
![f(x)\rightarrow -\infty\text{ as }x\rightarrow 0^-](https://img.qammunity.org/2019/formulas/mathematics/middle-school/kpuw7y9cdo0imlb66c64sb31xvx8p9s6zt.png)
![f(x)\rightarrow \infty\text{ as }x\rightarrow 0^+](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3oomwid1lee6tnzltbo5anmwl97us4tpr3.png)
![f(x)\rightarrow =\text{ as }x\rightarrow \infty](https://img.qammunity.org/2019/formulas/mathematics/middle-school/svkcedvu5kpd2wbwckn9fep2b0z5dck28k.png)
5. Table of value:
The table of values is
x f(x)
-2 -2
-1 -4
1 4
2 2
Plot these ordered pairs on a coordinate and connect these points by free hand curve using the key features.