![f(x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/dcofkcfwvli28hxbmh7qv2dr7hnzsu78mx.png)
will have a horizontal asymptote of
![y=2](https://img.qammunity.org/2019/formulas/mathematics/college/tquxylgweahecj9nmpjyvd93pf2a81t5mh.png)
if
![\displaystyle\lim_(x\to\pm\infty)(f(x)-2)=0](https://img.qammunity.org/2019/formulas/mathematics/college/prb5f8qkiog1r91hwbo4cfigk24w77epow.png)
where at least one of these limits needs to be satisfied. Since we would like
![(2x^m)/(x+a)-2=(2x^m-2(x+a))/(x+a)](https://img.qammunity.org/2019/formulas/mathematics/college/nl98lkgfnru3fo5fsi3tkr2vnltlc1bude.png)
to converge to 0, we need the
![x^m](https://img.qammunity.org/2019/formulas/mathematics/college/uf9znfhbhvx5izev31cqi1x5l80pck82o8.png)
term to disappear in the numerator. The only way for that to happen is if
![m=1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/pt956c2tcd88j8xgourc9x6ovip7es9bta.png)
. Then
![(2x-2(x+a))/(x+a)=-(2a)/(x+a)](https://img.qammunity.org/2019/formulas/mathematics/college/t2dfl2jrjo1sonnehgkj0ij797ug28mngn.png)
and this does indeed approach 0 as
![x](https://img.qammunity.org/2019/formulas/mathematics/college/lhtxftojjkzsmo3o2h4ilq8naohracejui.png)
gets arbitrarily large.
Now, in order to have a vertical asymptote at
![x=1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/etd77jui6mm2z2ngebg2jbgevvrgge83wx.png)
, all we need to do is set
![a=-1](https://img.qammunity.org/2019/formulas/mathematics/high-school/yb8nmbhy518l9a0sqbj45xanf1v9siilev.png)
. Then
![\displaystyle\lim_(x\to-1)(2x)/(x+1)](https://img.qammunity.org/2019/formulas/mathematics/college/39hc6q6adtkmjogybh0wc2uuepvu5nr5k0.png)
does not exist, as required.