Answer:
2 triangles are possible.
Explanation:
Given,
In triangle ABC,
∠ B = 45°,
AC = b = 4 unit,
AB = c = 5 unit,
By the sine law,
![(sin B)/(b)=(sin C)/(c)](https://img.qammunity.org/2019/formulas/mathematics/high-school/9g9digme2lyac5tnem6c7mc3b5mw1pvwbk.png)
![(sin 45^(\circ))/(4)=(sin C)/(5)](https://img.qammunity.org/2019/formulas/mathematics/high-school/bnnj9sp68ndxponwd3qpktvtnj22xzdx5y.png)
![5 (1)/(√(2)) = 4 sin C](https://img.qammunity.org/2019/formulas/mathematics/high-school/hwvcvihxij4z1f7se2iuhhc1a1jbsrnji7.png)
If ∠C = 62.114°,
∵ ∠A + ∠B + ∠C = 180°,
∠A + 45° + 62.114° = 180°
⇒ ∠A = 72.886°,
If ∠C = 117.886°
⇒ ∠A + 45° + 117.886° = 180°
⇒ ∠A = 17.114°,
Again by the law of sine,
![(sin B)/(b)=(sin A)/(a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/svjkz0heb5rji30chwdn0f8x8t8vjhbhw9.png)
If ∠A = 72.886°,
![(sin 45^(\circ))/(4)=(sin 72.886^(\circ))/(a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/xrekdkbaab7ihmd3d32vyeykl78jfq57nn.png)
![\implies a\approx 5.01\text{ unit}](https://img.qammunity.org/2019/formulas/mathematics/high-school/46g5jq1ebm8mfyhv6wmilufycgvcw7wub8.png)
If ∠A = 17.114°,
![(sin 45^(\circ))/(4)=(sin 17.114^(\circ))/(a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/2q2yg8e90mn3zwqoxygx4g5okbd8jxlcpo.png)
![\implies a\approx 1.66\text{ unit}](https://img.qammunity.org/2019/formulas/mathematics/high-school/3jcduv8xqfrxent5772dqc0wcszc3cct42.png)
Hence, two triangles are possible.