177k views
1 vote
PLEASE HELP which of the following identities? Check all that apply

PLEASE HELP which of the following identities? Check all that apply-example-1

2 Answers

4 votes

\sin(x - \pi) = \sin(x) \cos(\pi) - sin(\pi) \cos(x)
via the angle sum formula of sin

since \: cos(\pi) = - 1 \: and \: sin(\pi) = 0 \: then \\ sin(x - \pi) = - sin(x) \: which \: proves \: the \: first \: choice


\cos(x + y) + cos(x - y) = 2 \cos(x) \cos(y) =\:cos(x + y) + cos(x - y)=cos(x) cos(y)-sin(x)sin(y) +cos(x)cos(y)+sin(x)sin(y)=2cos(x)cos(y)
which proves the second choice
the third choice is wrong since for x=0,y=0 it will show that 2=1 which is incorrect
for the fourth one you can do some thing similar to choice one just expand the sum formula of sin and that should be true too
so
the first , the second and the fourth are all true
User Danny Fang
by
8.4k points
4 votes

Answer:

The identities which are true are:

A)


\sin (x-\pi)=-\sin x

B)


\cos (x+y)+\cos (x-y)=2\cos x\cos y

D)


\sin (x+y)-\sin (x-y)=2\cos x\sin y

Explanation:

A)


\sin (x-\pi)=-\sin x

We know that:


\sin (x-\pi)=\sin (-(\pi-x))\\\\i.e.\\\\\sin (x-\pi)=-\sin (\pi-x)

( since we know that:


\sin (-x)=-\sin x )

Also,


\sin (\pi-x)=\sin x

Hence, we get:


\sin (x-\pi)=-\sin x

This identity is true.

B)


\cos (x+y)+\cos (x-y)=2\cos x\cos y

We know that:


\cos (x+y)=\cos x\cos y-\sin x\sin y

and


\cos (x-y)=\cos x\cos y+\sin x\sin y

Hence, we get:


\cos (x+y)+\cos (x-y)=\cos x\cos y-\sin x\sin y+\cos x\cos y+\sin x\sin y\\\\i.e.\\\\\cos (x+y)+\cos (x-y)=2\cos x\cos y

Hence, this identity is true.

C)


\cos (x+y)+\cos (x-y)=\cos^2x-\sin^2y

Let us take x=0 and y=0 then we have:


\cos (0)+\cos (0)=\cos^20-\sin^20\\\\i.e.\\\\1+1=1-0\\\\i.e.\\\\2=1

which can't be possible.

Hence, this identity is not true.

D)


\sin (x+y)-\sin (x-y)=2\cos x\sin y

We know that:


\sin (x+y)=\sin x\cos y+\cos x\sin y

and


\sin (x-y)=\sin x\cos y-\cos x\sin y

Hence, we get:


\sin (x+y)-\sin (x-y)=\sin x\cos y+\cos x\sin y-(\sin x\cos y-\cos x\sin y)

i.e.


\sin (x+y)-\sin (x-y)=\sin x\cos y+\cos x\sin y-\sin x\cos y+\cos x\sin y

i.e.


\sin (x+y)-\sin (x-y)=2\cos x\sin y

Hence, this identity is true.

User Regent
by
8.5k points

No related questions found