(a) By DeMoivre's theorem, we have
![(\cos\theta+i\sin\theta)^5=\cos5\theta+i\sin5\theta](https://img.qammunity.org/2019/formulas/mathematics/high-school/4cebaje6f7emq1b5tjnsfkcry55br3skkw.png)
On the LHS, expanding yields
![\cos^5\theta+5i\cos^4\theta\sin\theta-10\cos^3\theta\sin^2\theta-10i\cos^2\theta\sin^3\theta+5\cos\theta\sin^4\theta+i\sin^4\theta](https://img.qammunity.org/2019/formulas/mathematics/high-school/ovra8cttv0navlc8iqn69uco95zksb3fm6.png)
Matching up real and imaginary parts, we have for (i) and (ii),
![\cos5\theta=\cos^5\theta-10\cos^3\theta\sin^2\theta+5\cos\theta\sin^4\theta](https://img.qammunity.org/2019/formulas/mathematics/high-school/bn6cpgepinq3f18cjvb3rqcpvh97feb27r.png)
![\sin5\theta=5\cos^4\theta\sin\theta-10\cos^2\theta\sin^3\theta+\sin^5\theta](https://img.qammunity.org/2019/formulas/mathematics/high-school/t0f82r7r620g592rv5p8ndu8wztw2di5qv.png)
(b) By the definition of the tangent function,
![\tan5\theta=(\sin5\theta)/(\cos5\theta)](https://img.qammunity.org/2019/formulas/mathematics/high-school/57mr47q8fpy27b5jk21xuzutnnb4nnawtq.png)
![=(5\cos^4\theta\sin\theta-10\cos^2\theta\sin^3\theta+\sin^5\theta)/(\cos^5\theta-10\cos^3\theta\sin^2\theta+5\cos\theta\sin^4\theta)](https://img.qammunity.org/2019/formulas/mathematics/high-school/lh9cmmtkie3f0ifg3pgxr5s1v2znxnab8b.png)
![=(5\tan\theta-10\tan^3\theta+\tan^5\theta)/(1-10\tan^2\theta+5\tan^4\theta)](https://img.qammunity.org/2019/formulas/mathematics/high-school/8mfimgwzvad5bn3ks5mibyk7ytzb7ja409.png)
![=(t^5-10t^3+5t)/(5t^4-10t^2+1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/6fegcgtll5152vkg1xo8jf50stz6g82ab6.png)
(c) Setting
![\theta=\frac\pi5](https://img.qammunity.org/2019/formulas/mathematics/high-school/yach0by36eoj3stjp14p5gkt123jwttrlb.png)
, we have
![t=\tan\frac\pi5](https://img.qammunity.org/2019/formulas/mathematics/high-school/itmye098ex7rirh0s2m9lse93hrq3lsir6.png)
and
![\tan5\left(\frac\pi5\right)=\tan\pi=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/d9wujc0yc2xdflacevzy3w7z5sw9dj694f.png)
. So
![0=(t^5-10t^3+5t)/(5t^4-10t^2+1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/dm7v63k4eac7joc2v0tbug1pmjjoyte5m8.png)
At the given value of
![t](https://img.qammunity.org/2019/formulas/mathematics/college/wn85rs21zjpgno6qvvr81v18j25hkod1uk.png)
, the denominator is a non-zero number, so only the numerator can contribute to this reducing to 0.
![0=t^5-10t^3+5t\implies0=t^4-10t^2+5](https://img.qammunity.org/2019/formulas/mathematics/high-school/ls7w3dp71dghe6vfwpk96xzlyls0n5thbu.png)
Remember, this is saying that
![0=\tan^4\frac\pi5-10\tan^2\frac\pi5+5](https://img.qammunity.org/2019/formulas/mathematics/high-school/h46td95trz2iwfnw9pu306pdjvwil4bvrx.png)
If we replace
![\tan^2\frac\pi5](https://img.qammunity.org/2019/formulas/mathematics/high-school/46croeei9ngum1hn5z6bzs00vus4wuwbjp.png)
with a variable
![x](https://img.qammunity.org/2019/formulas/mathematics/college/lhtxftojjkzsmo3o2h4ilq8naohracejui.png)
, then the above means
![\tan^2\frac\pi5](https://img.qammunity.org/2019/formulas/mathematics/high-school/46croeei9ngum1hn5z6bzs00vus4wuwbjp.png)
is a root to the quadratic equation,
![x^2-10x+5=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/77iekcld3ajk8o4kxf1olhzb6q7o0vmtgp.png)
Also, if
![\theta=\frac{2\pi}5](https://img.qammunity.org/2019/formulas/mathematics/high-school/5aqwqcxhe4ymj7lajtgs0idnbffyri37am.png)
, then
![t=\tan\frac{2\pi}5](https://img.qammunity.org/2019/formulas/mathematics/high-school/bbqfvr81o22r8jdrf3afp8ox9n31o5k2ec.png)
and
![\tan5\left(\frac{2\pi}5\right)=\tan2\pi=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/30sqtuulv06pwtrtm7hpi257pizilzvswv.png)
. So by a similar argument as above, we deduce that
![\tan^2\frac{2\pi}5](https://img.qammunity.org/2019/formulas/mathematics/high-school/3uhb0ljlxogyhqjdpbkxqg27soxkho2yrh.png)
is also a root to the quadratic equation above.
(d) We know both roots to the quadratic above. The fundamental theorem of algebra lets us write
![x^2-10x+5=\left(x-\tan^2\frac\pi5\right)\left(x-\tan^2\frac{2\pi}5\right)](https://img.qammunity.org/2019/formulas/mathematics/high-school/wj13so5rc1iny7w45361l8yd3sq53nexdr.png)
Expand the RHS and match up terms of the same power. In particular, the constant terms satisfy
![5=\tan^2\frac\pi5\tan^2\frac{2\pi}5\implies\tan\frac\pi5\tan\frac{2\pi}5=\pm\sqrt5](https://img.qammunity.org/2019/formulas/mathematics/high-school/kkjhelrkjhj771r4p28tfnha3e8k6afnoc.png)
But
![\tanx>0](https://img.qammunity.org/2019/formulas/mathematics/high-school/vzi0yx4dnl9wn24cs003mknygwro8yhc67.png)
for all
![0<x<\frac\pi2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/osxvox751j85cctodgdqok2tqyqbm3v6at.png)
, as is the case for
![x=\frac\pi5](https://img.qammunity.org/2019/formulas/mathematics/high-school/2b9bftdhwprbtjgae7k9l5b1kp7lsnao6s.png)
and
![x=\frac{2\pi}5](https://img.qammunity.org/2019/formulas/mathematics/high-school/1aajqbrp2s9x02n9hgxwmil7xvtym3a4t3.png)
, so we choose the positive root.