Answer:
y-coordinate of the solution is, -5
Explanation:
Given the system of equations:
![y = 6x-11](https://img.qammunity.org/2019/formulas/mathematics/high-school/7ms58ls3o4s79ln254p21pg6rzq88aiver.png)
![y= x^2+4x-10](https://img.qammunity.org/2019/formulas/mathematics/high-school/nl75bv0jfdwr87xoveks6spgx88ja7bavm.png)
Equate these two equations we have;
![6x-11 = x^2+4x-10](https://img.qammunity.org/2019/formulas/mathematics/high-school/r07tpk9sj3yyjzoxr908lfgko74fph1dpz.png)
Subtract 6x from both sides we have;
![-11 = x^2-2x-10](https://img.qammunity.org/2019/formulas/mathematics/high-school/7i2jyg0hmakaeeitrhwzkonsiuf5krkhz4.png)
Add 11 both sides we have;
![0= x^2-2x+1](https://img.qammunity.org/2019/formulas/mathematics/high-school/sqspim65nabfhjabs5x0jjbnha1ipyr86a.png)
Using the identity rule:
![(a-b)^2 = a^2-2ab+b^2](https://img.qammunity.org/2019/formulas/mathematics/college/mgyw1dc8e1zodrpkjz4503ctldhc6txvem.png)
then;
![x^2-2x+1 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/2oea3zb66skonb8xzd6bno7pista7kg5v1.png)
⇒
![(x-1)^2 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/yl5zougz55rrrryzqp24me3e5522l7aw5e.png)
⇒
![x-1 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/m0oz5hduohqhiwshcfcvpjibwejde7pqog.png)
⇒x = 1
Substitute the value of x in
we have;
![y = 6(1)-11 = 6-11 = -5](https://img.qammunity.org/2019/formulas/mathematics/high-school/vbaikc53rmpezii77f73e514n9301zdz7d.png)
therefore, the y-coordinate of the solution is, -5