230k views
2 votes
Why is it that -log(x+8)=4-log(x-7) has no solution? (they are log base 2)

2 Answers

2 votes
Note that -log(x+8) + log(x-7) = 4, and that the left side is equal to

x-7
log -------------
x-8

Therefore,

x-7
log ------------- = 4
x-8

Acknowledging that your "log" actually represents "log to the base 2 of ... "

We get:

x-7
--------- = 2^4 = 16
x-8

Can this be solved for x?

Rearranging, x-7 = 16x - 128, or -7 = 15x - 128, or 121 = 15x
121
Dividing 121 by 15, we get x = ------- = 121/15 = approx. 8.067.
15


So far I see no reason why the given -log(x+8)=4-log(x-7) "has no solution."
User Xszaboj
by
5.3k points
4 votes

-log(x+8)=4-log(x-7)


-\log _(10)\left(x+8\right)+\log _(10)\left(x+8\right)=4-\log _(10)\left(x-7\right)+\log _(10)\left(x+8\right)


0=4-\log _(10)\left(x-7\right)+\log _(10)\left(x+8\right)


0+\log _(10)\left(x-7\right)=4-\log _(10)\left(x-7\right)+\log _(10)\left(x+8\right)+\log _(10)\left(x-7\right)


\log _(10)\left(x-7\right)=\log _(10)\left(x+8\right)+4


\log _(10)\left(x-7\right)=\log _(10)\left(x+8\right)+\log _(10)\left(10000\right)


x-7=\left(x+8\right)\cdot \:10000


\mathrm{Solve\:}\:x-7=\left(x+8\right)10000:\quad x=-(26669)/(3333)


\mathrm{Verifying\:Solutions}:\quad x=-(26669)/(3333)\space\mathrm{False}


\mathrm{No\:Solution\:for\:x\in \mathbb{R}}
User Jeff Axelrod
by
5.1k points