230k views
2 votes
Why is it that -log(x+8)=4-log(x-7) has no solution? (they are log base 2)

2 Answers

2 votes
Note that -log(x+8) + log(x-7) = 4, and that the left side is equal to

x-7
log -------------
x-8

Therefore,

x-7
log ------------- = 4
x-8

Acknowledging that your "log" actually represents "log to the base 2 of ... "

We get:

x-7
--------- = 2^4 = 16
x-8

Can this be solved for x?

Rearranging, x-7 = 16x - 128, or -7 = 15x - 128, or 121 = 15x
121
Dividing 121 by 15, we get x = ------- = 121/15 = approx. 8.067.
15


So far I see no reason why the given -log(x+8)=4-log(x-7) "has no solution."
User Xszaboj
by
7.6k points
4 votes

-log(x+8)=4-log(x-7)


-\log _(10)\left(x+8\right)+\log _(10)\left(x+8\right)=4-\log _(10)\left(x-7\right)+\log _(10)\left(x+8\right)


0=4-\log _(10)\left(x-7\right)+\log _(10)\left(x+8\right)


0+\log _(10)\left(x-7\right)=4-\log _(10)\left(x-7\right)+\log _(10)\left(x+8\right)+\log _(10)\left(x-7\right)


\log _(10)\left(x-7\right)=\log _(10)\left(x+8\right)+4


\log _(10)\left(x-7\right)=\log _(10)\left(x+8\right)+\log _(10)\left(10000\right)


x-7=\left(x+8\right)\cdot \:10000


\mathrm{Solve\:}\:x-7=\left(x+8\right)10000:\quad x=-(26669)/(3333)


\mathrm{Verifying\:Solutions}:\quad x=-(26669)/(3333)\space\mathrm{False}


\mathrm{No\:Solution\:for\:x\in \mathbb{R}}
User Jeff Axelrod
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories