Recall some identities:
![\cos^2x+\sin^2x=1](https://img.qammunity.org/2019/formulas/mathematics/high-school/np01otdhup20ivi30gt93e5o5tfpob49cs.png)
![\tan^2x+1=\sec^2x=\frac1{\cos^2x}](https://img.qammunity.org/2019/formulas/mathematics/high-school/4etxhkukg3w8kb6oqc8uhh8ejx5oyjrqxq.png)
![\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta](https://img.qammunity.org/2019/formulas/mathematics/high-school/vvk2p3huheytye34sfvyo1m38ywtppkqj6.png)
![\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta](https://img.qammunity.org/2019/formulas/mathematics/high-school/999t3n5c3pzh8md0prnpt0hcu8hvbgp1ck.png)
Not sure what part (c) is asking for, but I assume it's
![\tan(\alpha+\beta)](https://img.qammunity.org/2019/formulas/mathematics/high-school/du38k2wj6qxdt5ojdy0dd8fa2616o0th5j.png)
, in which case
![\tan(\alpha+\beta)=(\sin(\alpha+\beta))/(\cos(\alpha+\beta))](https://img.qammunity.org/2019/formulas/mathematics/high-school/d3dp9gwsjydem14j144229vfue4cxfknpk.png)
If
![\tan\alpha=-\frac43](https://img.qammunity.org/2019/formulas/mathematics/high-school/wni300pcj4nt8r2vpgom3gjzvd3uudupga.png)
, then
![\frac1{\cos^2\alpha}=1+\left(-\frac43\right)^2=\frac{25}9](https://img.qammunity.org/2019/formulas/mathematics/high-school/vkuklp7xzq67cw305n0x82b5v89agdz08k.png)
![\implies\cos\alpha=\pm\frac35](https://img.qammunity.org/2019/formulas/mathematics/high-school/u4uji84ggtu6wduypcgu2y611b86ea2043.png)
We know that
![\alpha](https://img.qammunity.org/2019/formulas/mathematics/high-school/y6v92ecu39q3viwwe10drntgizvdkj4567.png)
lies in quadrant 2, i.e.
![\frac\pi2<\alpha<\pi](https://img.qammunity.org/2019/formulas/mathematics/high-school/ikmdnsuyxugr5pdi0nfzhjfah7z44qpa9i.png)
, so we expect
![\cos\alpha<0](https://img.qammunity.org/2019/formulas/mathematics/high-school/y3z4xboqs6h7geni576kyn38r6cdmunk2o.png)
. So we take the negative root. We also find that
![\tan\alpha=(\sin\alpha)/(\cos\alpha)\iff-\frac43=(\sin\alpha)/(-\frac35)\implies\sin\alpha=\frac45](https://img.qammunity.org/2019/formulas/mathematics/high-school/kjfe110osp34zflxagq7anbrnar6mabzc5.png)
If
![\cos\beta=\frac23](https://img.qammunity.org/2019/formulas/mathematics/high-school/y1s0tm60zai1psl46a8yqqo9h90sgu070p.png)
, then
![\sin^2\beta=1-\left(\frac23\right)^2=\frac59\implies\sin\beta=\pm\frac{\sqrt5}3](https://img.qammunity.org/2019/formulas/mathematics/high-school/oa7pcrlxtgicttl8losapqkh4xd2fhuu7x.png)
Since
![\beta](https://img.qammunity.org/2019/formulas/chemistry/college/y9wwbdrqob46nmy6vv76z7do3e6jpzfw7i.png)
lies in quadrant 1, i.e.
![0<\beta<\frac\pi2](https://img.qammunity.org/2019/formulas/mathematics/high-school/piajm6cxmiqyfghxja9xuh5z6n2h7ica91.png)
, we know that
![\sin\beta>0](https://img.qammunity.org/2019/formulas/mathematics/high-school/arx3g873x2oe75qyn5dosh0zmhtyqz6wqt.png)
, so we take the positive root.
Now,
![\cos(\alpha+\beta)=-\frac35\cdot\frac23-\frac45\cdot\frac{\sqrt5}3=-\frac52-\frac4{3\sqrt5}](https://img.qammunity.org/2019/formulas/mathematics/high-school/j8goks5c4ho6mf6db6sunfdud2td1i7zq1.png)
![\sin(\alpha+\beta)=\frac45\cdot\frac23+\left(-\frac35\right)\cdot\frac{\sqrt5}3=\frac8{15}-\frac1{\sqrt5}](https://img.qammunity.org/2019/formulas/mathematics/high-school/dz1wfvm10werrdsu41unoriekd13ps1jhs.png)
Then it follows that
![\tan(\alpha+\beta)=\frac{\frac8{15}-\frac1{\sqrt5}}{-\frac52-\frac4{3\sqrt5}}=(54-25\sqrt5)/(22)](https://img.qammunity.org/2019/formulas/mathematics/high-school/q2yf5exqqvyz9ftxcru5oriawpr29jat40.png)