205k views
5 votes
Tan α = - 4/3 lies in quad 2, and cos β = 2/3 lies in quad 1 find

a. cos(α + β)
b. sin( α+β)
c. t...

1 Answer

5 votes
Recall some identities:



\cos^2x+\sin^2x=1


\tan^2x+1=\sec^2x=\frac1{\cos^2x}



\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta



\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta

Not sure what part (c) is asking for, but I assume it's
\tan(\alpha+\beta), in which case



\tan(\alpha+\beta)=(\sin(\alpha+\beta))/(\cos(\alpha+\beta))


If
\tan\alpha=-\frac43, then


\frac1{\cos^2\alpha}=1+\left(-\frac43\right)^2=\frac{25}9

\implies\cos\alpha=\pm\frac35

We know that
\alpha lies in quadrant 2, i.e.
\frac\pi2<\alpha<\pi, so we expect
\cos\alpha<0. So we take the negative root. We also find that


\tan\alpha=(\sin\alpha)/(\cos\alpha)\iff-\frac43=(\sin\alpha)/(-\frac35)\implies\sin\alpha=\frac45

If
\cos\beta=\frac23, then



\sin^2\beta=1-\left(\frac23\right)^2=\frac59\implies\sin\beta=\pm\frac{\sqrt5}3


Since
\beta lies in quadrant 1, i.e.
0<\beta<\frac\pi2, we know that
\sin\beta>0, so we take the positive root.


Now,


\cos(\alpha+\beta)=-\frac35\cdot\frac23-\frac45\cdot\frac{\sqrt5}3=-\frac52-\frac4{3\sqrt5}



\sin(\alpha+\beta)=\frac45\cdot\frac23+\left(-\frac35\right)\cdot\frac{\sqrt5}3=\frac8{15}-\frac1{\sqrt5}

Then it follows that



\tan(\alpha+\beta)=\frac{\frac8{15}-\frac1{\sqrt5}}{-\frac52-\frac4{3\sqrt5}}=(54-25\sqrt5)/(22)
User Nikoniko
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.