191k views
1 vote
Simplify this equation please.


( \csc^(2) ( \theta) - 3 \csc( \theta) + 2 )/( \csc^(2) ( \theta) - 1)

User IKo
by
8.1k points

1 Answer

1 vote

(\csc^2\theta-3\csc\theta+2)/(\csc^2\theta-1)

Identity:


\sin^2\theta+\cos^2\theta=1\implies1+\cot^2\theta=\csc^2\theta

So we can rewrite the denominator to get


(\csc^2\theta-3\csc\theta+2)/(\cot^2\theta)

Multiply numerator and denominator by
\sin^2\theta. Several terms will cancel since
\sin\theta\csc\theta=1. Also,
\cot\theta=(\cos\theta)/(\sin\theta). We get


(1-3\sin\theta+2\sin^2\theta)/(\cos^2\theta)

Factorize the numerator, and write
\cos in terms of
\sin in the denominator to factorize it further to get


((1-\sin\theta)(1-2\sin\theta))/(\cos^2\theta)=((1-\sin\theta)(1-2\sin\theta))/(1-\sin^2\theta)=((1-\sin\theta)(1-2\sin\theta))/((1-\sin\theta)(1+\sin\theta))


The
1-\sin\theta factors cancel, leaving you with


(1-2\sin\theta)/(1+\sin\theta)

which you could simplify a bit further by writing


(1+\sin\theta-3\sin\theta)/(1+\sin\theta)=1-(3\sin\theta)/(1+\sin\theta)
User Tristan Elliott
by
8.2k points