152k views
5 votes
What is the following sum? 4(5 sqrt x^2y)+3(5 sqrt x^2y)

User Whitebrow
by
5.5k points

2 Answers

0 votes

Answer:

7(5 sqrt x^2y) or C

Explanation:

User Tauri
by
5.4k points
4 votes
ANSWER



4(5 \sqrt{ {x}^(2)y } ) + 3(5 \sqrt{ {x}^(2) y} ) = 35x√(y)


EXPLANATION

The given expression is

4(5 \sqrt{ {x}^(2)y } ) + 3(5 \sqrt{ {x}^(2) y} )


We need to simplify the above expression first before, we add them.


Let us deal with the expressions within the parenthesis first,


4(5 \sqrt{ {x}^(2)y } ) + 3(5 \sqrt{ {x}^(2) y} ) = 4(5 \sqrt{ {x}^(2)}* √(y) ) + 3(5 \sqrt{ {x}^(2) } * √(y) )


This will simplify to,


4(5 \sqrt{ {x}^(2)y } ) + 3(5 \sqrt{ {x}^(2) y} ) = 4(5 x* √(y) ) + 3(5 x * √(y) )


We now multiply out the brackets to obtain,


4(5 \sqrt{ {x}^(2)y } ) + 3(5 \sqrt{ {x}^(2) y} ) = 20 x* √(y) + 15 x * √(y) )


This implies that,


4(5 \sqrt{ {x}^(2)y } ) + 3(5 \sqrt{ {x}^(2) y} ) = 20 x√(y) + 15 x √(y) )


This will give us,


4(5 \sqrt{ {x}^(2)y } ) + 3(5 \sqrt{ {x}^(2) y} ) = 35x√(y)
User Nande Kore
by
6.7k points