Use the Chinese remainder theorem. Suppose we set
![N=5\cdot13+11\cdot12](https://img.qammunity.org/2019/formulas/mathematics/college/g6jvr3r4iseswg32crku6y0o8ew9wnaion.png)
. Then clearly taken modulo 12, the second term vanishes, and incidentally
![5\cdot13\equiv65\equiv5\pmod{12}](https://img.qammunity.org/2019/formulas/mathematics/college/oy4qiec4hpdcys439zrcp9rc9k1l0dhyi0.png)
; taken modulo 13, the first term vanishes, but the second term leaves a remainder of 2. To counter this, we can multiply the second term by the inverse of 12 modulo 13, which is 12 since
![12^2\equiv144\equiv11\cdot13+1\equiv1\pmod{13}](https://img.qammunity.org/2019/formulas/mathematics/college/fgvxmhs4cr7c8dzj1qoiy1db0rcytk5hgx.png)
.
So, we found that
![N=5\cdot13+11\cdot12^2=1649](https://img.qammunity.org/2019/formulas/mathematics/college/e64qnlc9xc860h62unyuo9fpna0apcdncc.png)
, but the least positive solution is
![1649\equiv89\pmod{\underbrace{156}_(12\cdot 13)}](https://img.qammunity.org/2019/formulas/mathematics/college/obxdusmr9yivq1mmyx3i4eer32hon9sogh.png)
, and in general we can have
![N=89+156k](https://img.qammunity.org/2019/formulas/mathematics/college/z05vvv2m6trg89c2v1s08222nf05j5n4sl.png)
for any integer
![k](https://img.qammunity.org/2019/formulas/mathematics/college/15kag055p6nexnfao4umqr4ga5vwz66jwb.png)
.
Now, since
![5000=32\cdot156+8](https://img.qammunity.org/2019/formulas/mathematics/college/axgtj8xicpm6xstljk9b143k2bqun28r53.png)
, or
![4992=32\cdot156](https://img.qammunity.org/2019/formulas/mathematics/college/tz9b1f4cx0knl7isczq03w06rb4rmnxbka.png)
, we know that there are 32 possible integers
![N](https://img.qammunity.org/2019/formulas/physics/middle-school/9hsqorqtrttno13wjarmefyah28qxa5ftz.png)
that satisfy the congruences.