57.1k views
1 vote
What are the zeros of the quadratic function f(x) = 2x2 + 16x – 9?

User Behroozbc
by
8.0k points

2 Answers

3 votes

2x^(2) +16x - 9 = 0 2(x + 4)^(2) - 41 = 0 (x + 4)^(2) = (41)/(2) x + 4 = \pm \sqrt{(41)/(2)} x = -4 \pm \sqrt{(41)/(2)}
User MeWantToLearn
by
8.1k points
2 votes

Answer:

The zeros to the quadratic equation are:


x= -4+\sqrt{(41)/(2)}\\\\x= -4-\sqrt{(41)/(2)}

Explanation:

A quadratic function is one of the form
f(x) = ax^2 + bx + c, where a, b, and c are numbers with a not equal to zero.

The zeros of a quadratic function are the two values of x when
f(x) = 0 or
ax^2 + bx +c = 0.

To find the zeros of the quadratic function
f(x)= 2x^2 + 16x -9 , we set
f(x) = 0, and solve the equation.


2x^2+16x\:-9=0


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\\\x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=2,\:b=16,\:c=-9:\quad x_(1,\:2)=(-16\pm √(16^2-4\cdot \:2\left(-9\right)))/(2\cdot \:2)\\\\x=(-16+√(16^2-4\cdot \:2\left(-9\right)))/(2\cdot \:2)= -4+\sqrt{(41)/(2)}\\\\x=(-16-√(16^2-4\cdot \:2\left(-9\right)))/(2\cdot \:2)= -4-\sqrt{(41)/(2)}

User Rahul Bhatia
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories