Answer: The energy released in the given nuclear reaction is 4.98 MeV.
Step-by-step explanation:
The equation for the alpha decay of Th-232 nucleus follows:
![_(90)^(232)\textrm{Th}\rightarrow _(88)^(228)\textrm{Ra}+_(2)^(4)\textrm{He}](https://img.qammunity.org/2019/formulas/physics/college/jf8iyoue031y7984kff3vjvzq1g35rzzjq.png)
We are given:
Mass of
= 232.038054 u
Mass of
= 228.0301069 u
Mass of
= 4.002602 u
To calculate the mass defect, we use the equation:
![\Delta m=\text{Mass of reactants}-\text{Mass of products}](https://img.qammunity.org/2019/formulas/physics/college/7l3dp2m46sen9yr6uluadgpv0hiuz6k37z.png)
Putting values in above equation, we get:
![\Delta m=(m_(Th))-(m_(Ra)+m_(He))\\\\\Delta m=(232.038054)-(228.0301069+4.002602)=0.0053451u](https://img.qammunity.org/2019/formulas/physics/college/u05e9te4e6tr6xg32l7450ujswcj0xwra2.png)
To calculate the energy released, we use the equation:
![E=\Delta mc^2\\E=(0.0053451u)* c^2](https://img.qammunity.org/2019/formulas/physics/college/obsz5in6tc6j4s9f4k2v8hbejag7epabn6.png)
(Conversion factor:
)
![E=4.98MeV](https://img.qammunity.org/2019/formulas/physics/college/weide725pfj5seqnj7ausknhe3m1rl91pj.png)
Hence, the energy released in the given nuclear reaction is 4.98 MeV.