We have been given that
mean,
![\mu = 128](https://img.qammunity.org/2019/formulas/mathematics/college/ep0fuxdy101t82s95x75kgrzjl5w7nni1b.png)
standard deviation
![\sigma = 16](https://img.qammunity.org/2019/formulas/mathematics/college/tetita9j02kphch60eqyu9td2gs1w8qbc6.png)
![x=100](https://img.qammunity.org/2019/formulas/mathematics/college/cfqihkv9dala1fof4i3p0yrzi8e50zjc0s.png)
Let us evaluate the z score using the below mentioned formula
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2019/formulas/mathematics/college/u4ithhep47bpu4c0nca9bhq3gnmjzjkce5.png)
On substituting the given values, we get
![z=(100-128)/(16) \\ \\ z=-1.75](https://img.qammunity.org/2019/formulas/mathematics/college/w7295534fzv306ds8nyaije7c6w3dl676z.png)
Thus, the value of z is -1.75.
Now, we find the probability that a battery you buy lasts at most 100 hours.
We will find the value for z= -1.75 using the z score table.
![P(z=-1.75)= .04006](https://img.qammunity.org/2019/formulas/mathematics/college/o7mvk0r6rutoh87z03hui89ze5yncio4vf.png)
Hence, the required probability is 0.04006