162k views
1 vote
Find the work done by the force field f(x,y,z)=3xi+3yj+7kf(x,y,z)=3xi+3yj+7k on a particle that moves along the helix r(t)=3cos(t)i+3sin(t)j+3tk,0≤t≤2π

User Vairavan
by
5.5k points

1 Answer

1 vote
Call the path
\mathcal C. Then the work done by
\mathbf f(x,y,z) along
\mathcal C is given by the line integral,
\displaystyle\int_(\mathcal C)\mathbf f(x,y,z)\cdot\mathrm d\mathbf r=\int_(t=0)^(t=2\pi)\mathbf f(x(t),y(t),z(t))\cdot(\mathrm d\mathbf r)/(\mathrm dt)\,\mathrm dt
Swapping the
\mathbf{ijk} notation out for ordered component notation, I'll write

\mathbf r(t)=(x(t),y(t),z(t))=(3\cos t,3\sin t,3t)
so that

(\mathrm d\mathbf r)/(\mathrm dt)=(-3\sin t,3\cos t,3)
The line integral reduces to
\displaystyle\int_0^1(9\cos t,9\sin t,7)\cdot(-3\sin t,3\cos t,3)\,\mathrm dt
=\displaystyle\int_0^1(-27\cos t\sin t+27\sin t\cos t+21)\,\mathrm dt
=\displaystyle21\int_0^1\mathrm dt=21
User Clarence
by
5.2k points