7.0k views
2 votes
Which expression is a cube root of -1+i√3?

A. ^3√2(cos120 + i sin 120)
B. ^3√4(cos320 + i sin 320)
C. ^3√2(cos40 + i sin 40)
D. ^3√4(cos280 + i sin 280)

1 Answer

5 votes

Answer:

The correct option is C.

Explanation:

Root Of Complex Numbers

If a complex number is expressed in polar form as


Z=(r,\theta)

Then the cubic roots of Z are


\displaystyle Z_1=\left(\sqrt[3]{r},(\theta)/(3)\right)


\displaystyle Z_2=\left(\sqrt[3]{r},(\theta)/(3)+120^o\right)


\displaystyle Z_3=\left(\sqrt[3]{r},(\theta)/(3)+240^o\right)

We are given the complex number in rectangular components


Z=-1+i√(3)

Converting to polar form


r=\sqrt{(-1)^2+(√(3))^2}=2


\displaystyle tan\theta=(√(3))/(-1)=-√(3)

It's located in the second quadrant, so


\theta=120^o

The number if polar form is


Z=(2,120^o)

Its cubic roots are


\displaystyle Z_1=\left(\sqrt[3]{2},(120^o)/(3)\right)=\left(\sqrt[3]{2},40^o\right)


\displaystyle Z_2=\left(\sqrt[3]{2},40^o+120^o\right)=\left(\sqrt[3]{2},160^o\right)


\displaystyle Z_3=\left(\sqrt[3]{2},40^o+240^o\right)=\left(\sqrt[3]{2},280^o\right)

Converting the first solution to rectangular coordinates


z_1=\sqrt[3]{2}(\ cos40^o+i\ sin40^o)

The correct option is C.

User Jon White
by
6.4k points