7.0k views
2 votes
Which expression is a cube root of -1+i√3?

A. ^3√2(cos120 + i sin 120)
B. ^3√4(cos320 + i sin 320)
C. ^3√2(cos40 + i sin 40)
D. ^3√4(cos280 + i sin 280)

1 Answer

5 votes

Answer:

The correct option is C.

Explanation:

Root Of Complex Numbers

If a complex number is expressed in polar form as


Z=(r,\theta)

Then the cubic roots of Z are


\displaystyle Z_1=\left(\sqrt[3]{r},(\theta)/(3)\right)


\displaystyle Z_2=\left(\sqrt[3]{r},(\theta)/(3)+120^o\right)


\displaystyle Z_3=\left(\sqrt[3]{r},(\theta)/(3)+240^o\right)

We are given the complex number in rectangular components


Z=-1+i√(3)

Converting to polar form


r=\sqrt{(-1)^2+(√(3))^2}=2


\displaystyle tan\theta=(√(3))/(-1)=-√(3)

It's located in the second quadrant, so


\theta=120^o

The number if polar form is


Z=(2,120^o)

Its cubic roots are


\displaystyle Z_1=\left(\sqrt[3]{2},(120^o)/(3)\right)=\left(\sqrt[3]{2},40^o\right)


\displaystyle Z_2=\left(\sqrt[3]{2},40^o+120^o\right)=\left(\sqrt[3]{2},160^o\right)


\displaystyle Z_3=\left(\sqrt[3]{2},40^o+240^o\right)=\left(\sqrt[3]{2},280^o\right)

Converting the first solution to rectangular coordinates


z_1=\sqrt[3]{2}(\ cos40^o+i\ sin40^o)

The correct option is C.

User Jon White
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories