Answer:
in
Explanation:
Let x be the side of square.
Length of box=8-2x
Width of box=15-2x
Height of box=x
Volume of box=
![L* B* H](https://img.qammunity.org/2020/formulas/mathematics/high-school/h2rua37rfetfbzx5da4cw6ubobcy6jbrjf.png)
Substitute the values then we get
Volume of box=V(x)=
![(8-2x)(15-2x)x=(15x-2x^2)(8-2x)](https://img.qammunity.org/2020/formulas/mathematics/college/dmrnucw9jva5rmxdcwqwvjraephptmxgw8.png)
![V(x)=120x-30x^2-16x^2+4x^3](https://img.qammunity.org/2020/formulas/mathematics/college/1uzdxmbnz4npqk1a21bsvhad7ky86avaw5.png)
![V(x)=4x^3-46x^2+120x](https://img.qammunity.org/2020/formulas/mathematics/college/h0roahcl5184exo12zfbsshgrxz5nm45y4.png)
Differentiate w.r.t x
![V'(x)=12x^2-92x+120](https://img.qammunity.org/2020/formulas/mathematics/college/9g4gax2pps0rl01t9ut5537dklyt6b9prl.png)
![V'(x)=0](https://img.qammunity.org/2020/formulas/mathematics/college/96wqw9pnuldwcpos2t5gta5iyfb18j6b0j.png)
![12x^2-92x+120=0](https://img.qammunity.org/2020/formulas/mathematics/college/nzv8mpo0hv0pnd5xt1unrn71pdxttdc49w.png)
![3x^2-23x+30=0](https://img.qammunity.org/2020/formulas/mathematics/college/pev4sj416ohgkuse6mryj23cnhm7rrj7ww.png)
![3x^2-18x-5x+30=0](https://img.qammunity.org/2020/formulas/mathematics/college/xzi56xj35dshsn9kcfdz2qo4znmvuogvbo.png)
![3x(x-6)-5(x-6)=0](https://img.qammunity.org/2020/formulas/mathematics/college/moe3551727z583p4c9x6jyvbv0kp4rijau.png)
![(x-6)(3x-5)=0](https://img.qammunity.org/2020/formulas/mathematics/college/aroq2ejqqiww45k4w2t5oaf8hu771y1734.png)
![x-6=0\implies x=6](https://img.qammunity.org/2020/formulas/mathematics/high-school/o9ouh351tx7ta7c63i8pz7xd4sv9qyvmu1.png)
![3x-5=0\implies x=(5)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/v9hwkcmn786ya9wwjee57ha72osf7ben7v.png)
Again differentiate w.r.t x
![V''(x)=24x-92](https://img.qammunity.org/2020/formulas/mathematics/college/pcpsg6fymdrkn21m1vst81o9w0tjrqiyuc.png)
Substitute x=6
![V''(6)=24(6)-92=52>0](https://img.qammunity.org/2020/formulas/mathematics/college/h6h5wemdfhsjdcct8yexuv54z60hgyi1mq.png)
Substitute x=5/3
![V''(5/3)=24(5/3)-92=-52<0](https://img.qammunity.org/2020/formulas/mathematics/college/pbx5927jlzoiqhj3dl4fzasfi2zv8u18ss.png)
Hence, the volume is maximum at x=
![(5)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/932m3fox3fmk5lfk3tls2eyev0gf4uzdnd.png)
Therefore, the side of the square ,
in cutout that gives the box the largest possible volume.