120k views
2 votes
Evaluate the surface integral ∫∫FS * dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation.F(x, y, z) = x i + y j + 8 kS is the boundary of the region enclosed by the cylinder x^2 + z^2 = 1 and the planes y = 0 and x + y = 6

User Mescarra
by
9.0k points

1 Answer

3 votes


\vec F(x,y,z)=x\,\vec\imath+y\,\vec\jmath+8\,\vec k\implies\\abla\cdot\vec F(x,y,z)=2

so that by the divergence theorem,


\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=2\iiint_R\mathrm dV

where
R is the interior of
S. In cylindrical coordinates, the integral is


\displaystyle2\iiint_R\mathrm dV=2\int_0^(2\pi)\int_0^1\int_0^(6-r\cos\theta)r\,\mathrm dy\,\mathrm dr\,\mathrm d\theta=\boxed{12\pi}

where we set


\begin{cases}x=r\cos\theta\\y=y\\z=r\sin\theta\end{cases}

User Hap
by
8.8k points