Answer:
![0.2528](https://img.qammunity.org/2020/formulas/physics/college/4ferqxnw3d35fe3819nxyi1upcg08xk3tc.png)
Step-by-step explanation:
To calculate the period we need the formula:
![T=(2\pi r^(3/2))/(√(GM))](https://img.qammunity.org/2020/formulas/physics/college/q72w3wg88oia5mvw60jvf49w9ob2wzgclx.png)
Where
is the radius of the moon,
is the universal constant of gravitation and
is the mass of mars.
The period of Phobos:
![T_(p)=(2\pi r_(p)^(3/2))/(√(GM))](https://img.qammunity.org/2020/formulas/physics/college/ofx9xzf8otx53ws1t1e71rllc30fgmh4h6.png)
The period of Deimos:
![T_(D)=(2\pi r_(D)^(3/2))/(√(GM))](https://img.qammunity.org/2020/formulas/physics/college/xmp66o4k5qjc0gefivvqi1n9nhktsr4aty.png)
The ratio of the period of Phobos and Deimos:
![(T_(p))/(T_(D))=((2\pi r_(p)^(3/2))/(√(GM)))/((2\pi r_(D)^(3/2))/(√(GM)))](https://img.qammunity.org/2020/formulas/physics/college/7yc3pw5a803bbdaekaqofq1g6hesilxsih.png)
![(T_(p))/(T_(D))=(√(GM)2\pi r_(p)^(3/2))/(√(GM)2\pi r_(D)^(3/2))](https://img.qammunity.org/2020/formulas/physics/college/wyubwte7at6gblmpdubrdcr4csb3kq3slt.png)
Most terms get canceled and we have:
![(T_(p))/(T_(D))=(r_(p)^(3/2))/(r_(D)^(3/2))](https://img.qammunity.org/2020/formulas/physics/college/y22wa5ah2j8cwc9m54bssmtrsx5goyuvq1.png)
According to the problem
![r_(p)=9,378km\\r_(D)=23,459km](https://img.qammunity.org/2020/formulas/physics/college/jm3jm0uojmoexvravxkj02ukyqkvw7tv2s.png)
so the ratio will be:
≈
![0.2528](https://img.qammunity.org/2020/formulas/physics/college/4ferqxnw3d35fe3819nxyi1upcg08xk3tc.png)
the ratio of the period of revolution of Phobos to that of Deimos is 0.2528