Answer:
81.9756 m/s
16.8 m
4.8795 Hz
Step-by-step explanation:
m = Mass of string = 0.12 kg
L = Length of string = 8.4 m
T = Tension on string = 96 N
Linear density is given by
![\mu=(m)/(L)\\\Rightarrow \mu=(0.12)/(8.4)](https://img.qammunity.org/2020/formulas/physics/college/839c39crkfb2kkxwrdvhpkyqkc7u5mc80z.png)
Spee of the wave is given by
![v=\sqrt{(T)/(\mu)}\\\Rightarrow v=\sqrt{(96)/((0.12)/(8.4))}\\\Rightarrow v=81.9756\ m/s](https://img.qammunity.org/2020/formulas/physics/college/hpr8wdjme39smr1l4vxwda87mldsk71obc.png)
The speed of the waves on the string is 81.9756 m/s
Wavelength is given by
![\lambda=2L\\\Rightarrow \lambda=2* 8.4\\\Rightarrow \lambda=16.8\ m](https://img.qammunity.org/2020/formulas/physics/college/hzom2tc67m6d5k6nmn5tp9221pcdnpyay1.png)
The longest possible wavelength is 16.8 m
Frequency is given by
![f=(v)/(\lambda)\\\Rightarrow f=(81.9756)/(16.8)\\\Rightarrow f=4.8795\ Hz](https://img.qammunity.org/2020/formulas/physics/college/16jc2scy2zrsi9xfomwffs952gxwpq0l5f.png)
The frequency of the wave is 4.8795 Hz