21.2k views
3 votes
EײIn2x with respect to x

1 Answer

2 votes

Answer:


(dy)/(dx) = e^{x^(2) } ( (1)/(x) + 2x ln2x )</strong></p><p><strong>Step-by-step explanation:</strong></p><p>Let Given function<strong> (y) = [tex]e^{x^(2)} ln2x

If we differentiate this function with respect to x -


(dy)/(dx) = (d)/(dx) ( e^{x^(2) } ln2x)

As we know that-

\frac{d}{dx} ( I × II ) = I × \frac{d}{dx} ( II ) + II × \frac{d}{dx} (I)

[tex]\frac{dy}{dx} = e^{x^{2} } \frac{d}{dx} ( ln2x ) + ln2x \frac{d}{dx} ( e^{x^{2} })

[tex]\frac{dy}{dx} = e^{x^{2} } \frac{1}{2x} × 2 + ln2x × e^{x^{2} } × 2x

[tex]\frac{dy}{dx} = e^{x^{2} } \frac{1}{x} + ln2x × e^{x^{2} } × 2x

[tex]\frac{dy}{dx} = e^{x^{2} } ( \frac{1}{x} + 2x ln2x )

User Joseph Roque
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories