Answer
given,
length of rod = 21.5 cm = 0.215 m
mass of rod (m) = 1.2 Kg
radius, r = 1.50
mass of ball, M = 2 Kg
radius of ball, r = 6.90/2 = 3.45 cm = 0.0345 m
considering the rod is thin
![I = (1)/(3)M_(rod)L^2 + [(2)/(5)M_(ball)R^2+M_(ball)(R+L)^2]](https://img.qammunity.org/2020/formulas/physics/high-school/xcwswj2cp2d5xd1k66x6no3ni1zb91lmbr.png)
![I = (1)/(3)* 1.2 * 0.215^2 + [(2)/(5)* 2 * 0.0345^2+2* (0.0345 +0.215)^2]](https://img.qammunity.org/2020/formulas/physics/high-school/gxvpsxqutptubaqtkevywxjgmtlk2rwar7.png)
I = 0.144 kg.m²
rotational kinetic energy of the rod is equal to
![KE = M_(rod)g(L)/(2) + M_(ball)g(L+R)^2](https://img.qammunity.org/2020/formulas/physics/high-school/rhpdn67sx48w3k1xu91jns485yr3krl3y9.png)
![KE = 1.2 * 9.8 * (0.215)/(2) + 2* 9.8* (0.215+0.0345)^2](https://img.qammunity.org/2020/formulas/physics/high-school/4zhysqra1pau2e3um9xahq96n38s6sltjg.png)
KE = 6.15 J
b) using conservation of energy
![K_f + U_f = K_i + U_i + \Delta E](https://img.qammunity.org/2020/formulas/physics/high-school/whz36kqwnuvzwm554juoqyg5wn94qiur83.png)
![(1)/(2)I\omega^2+ 0=0 + 6.15+0](https://img.qammunity.org/2020/formulas/physics/high-school/3cb20hjhbgnt0kiaads8mdwc6ae237bcf9.png)
![(1)/(2)* 0.144 * \omega^2= 6.15](https://img.qammunity.org/2020/formulas/physics/high-school/xp5biao9g6zb9gxazpctkio9fmleu4fg1l.png)
ω = 9.25 rad/s
c) linear speed of the ball
v = r ω
v = (L+R )ω
v = (0.215+0.0345) x 9.25
v =2.31 m/s
d) using equation of motion
v² = u² + 2 g h
v² = 0 + 2 x 9.8 x 0.248
v = √4.86
v =2.20 m/s
speed attained by the swing is more than free fall
% greater =
![(2.31-2.20)/(2.20)* 100](https://img.qammunity.org/2020/formulas/physics/high-school/q10kq7fsiew8wxb5nadj5gkw3dzcgtym73.png)
= 5 %
speed of swing is 5 % more than free fall