To solve this problem it is necessary to apply the concepts related to the thermal transfer rate. In general, the transfer rate can be expressed as
![(Q)/(t) = (kA\Delta T)/(L)](https://img.qammunity.org/2020/formulas/physics/college/d2hb8cbba834z370o29bq9hz1i4ws7nyg5.png)
Where,
k = Thermal conductivity
A = Cross-sectional area
= Change of temperature
L = Length
Since the two heat transfer rates are equivalent we have to:
![(Q_1)/(t) = (Q_2)/(t)](https://img.qammunity.org/2020/formulas/physics/college/q90gb9r73xany1u7za45btzingmazrsqyg.png)
![(k_1A(T_2-T_1))/(L/2)=(k_2A(T_1-T_2'))/(L/2)](https://img.qammunity.org/2020/formulas/physics/college/8omfrb9h1ggbz31ua7se86us4un2v735t0.png)
Replacing we have,
![k_1(400-T) = k_2(T-200)](https://img.qammunity.org/2020/formulas/physics/college/bfazymot7yl5g9pbfaahia6kxh09x4no5i.png)
![k_1(400)-k_1T=k_2T-k_2(200)](https://img.qammunity.org/2020/formulas/physics/college/c7ryvd17ibi0mu54ppc9oqodyujl7mq6cx.png)
![k_1(400)+k_2(200)=(k_1+k_2)T](https://img.qammunity.org/2020/formulas/physics/college/zxajcvg3l2zavka4srqccmuca6bwws56qw.png)
![T = (k_1(400)+k_2(200))/(k_1+k_2)](https://img.qammunity.org/2020/formulas/physics/college/sg4g29fzddnfct2th6uqpmqlrnbzwruxdx.png)
![T = ((240)(400)+(120)(200))/(240+120)](https://img.qammunity.org/2020/formulas/physics/college/ozp5zvy1fjix697klqazr5r5re9lw15f42.png)
![T = 333.3°C](https://img.qammunity.org/2020/formulas/physics/college/tiitnc0vskslcnja56g00s1s5gawc9rtqn.png)
Therefore the temperature where the two bars are joined together is 300°C