110k views
0 votes
Please help !!
prove abp = dcp

Please help !! prove abp = dcp-example-1
User Notrace
by
6.4k points

1 Answer

5 votes

Answer:

  1. ∠1≅∠2-------------------------(Given)
  2. m∠1=m∠2-------------------(Definition of congruent angles)
  3. ∠ABP, ∠1 and ∠DCP,∠2 form linear pair---------------Linear pair
  4. m∠ABP+m∠1=180° and m∠DCP+m∠2=180°--------definition of linear pair
  5. ∠ABP≅∠DCP--------------------If equals are subtracted from equals, the remainders are equal
  6. AP≅DP----------------------------Given
  7. ΔABP≅ΔDCP-------------------AAS

Explanation:

Given, ∠1≅∠2, ∠3≅∠4 and AP≅DP,

  • We know that,

∠1≅∠2(given)

m∠1=m∠2(definition of congruent angles)


  • ABP+m∠1=180° and ∠
    DCP+m∠2=180° (Linear Pair)

180°=180°(Reflexive)

⇒m∠
ABP+m∠1=m∠
DCP+m∠2

But m∠1 =m∠2 (definition of congruent angles)

⇒m∠
ABP+m∠1=m∠
DCP+m∠1

m∠
ABP+=m∠
DCP[/tex</strong>] ( If equals are subtracted from equals, the remainders are equal)</p><ul><li><strong>[tex]AP=
DP(GIven)

Therefore, Δ
ABP=Δ
DCP (by AAS criteria)

condition are:

  1. m∠1=m∠2 (Angle)
  2. m∠
    ABP=m∠
    DCP (Angle)
  3. AP=DP (Side)
User Jingx
by
6.3k points