Answer:
![(√(2),-1),(-√(2),-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ex1c22s9l0nbvmjdn3ovyqu253kufzs9o3.png)
(StartRoot 2 EndRoot, negative 1) and (negative StartRoot 2 EndRoot, negative 1)
Explanation:
we have
----> equation A
-----> equation B
solve by substitution
substitute equation B in equation A
![-2x^(2) +(-3x^(2) +5)=-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q0tduxwoeb516gjj2l0hx3v6fq6oya66md.png)
solve for x
![-5x^(2) +5=-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o2rxvvgtda4da1uy01pvkgbstx2disjw36.png)
![-5x^(2)=-10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4isithc4b3tavmo9dg2shustdz1jc4g8rv.png)
![x^(2)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tfrsm1k492pj1dg802quah3kcxx8qmcya3.png)
![x=\pm√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k6lvcru9uotmrzmntginywi8qsgrryf9qu.png)
Find the value of y
For
---->
For
---->
therefore
The solutions are
![(√(2),-1),(-√(2),-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ex1c22s9l0nbvmjdn3ovyqu253kufzs9o3.png)
(StartRoot 2 EndRoot, negative 1) and (negative StartRoot 2 EndRoot, negative 1)