Answer:
t = 186.2 μs
Step-by-step explanation:
Current in LR series circuit
----(1)
steady current = I_{s} = V/R
time constant = τ =
![L/R =4.3 * 10^(-3) / 16\\](https://img.qammunity.org/2020/formulas/physics/college/vmgj5l3tap4woz3w7wgmyn6g1pfqw77ox0.png)
= 0.268 ms
magnetic energy stored in coil =
![U_(L) = (1)/(2)LI^(2)](https://img.qammunity.org/2020/formulas/physics/college/urvdxyx1xddipyx37iilp54lwq22miuqf2.png)
rate at which magnetic energy stored in coil=
----(2)
rate at which power is dissipated in R:
---(3)
To find the time when the rate at which energy is dissipated in the coil equals the rate at which magnetic energy is stored in the coil equate (2) and (3)
[/tex]I=\frac{L}{R}\frac{dI}{dt}[/tex]----(4)
differentiating (1) w.r.to t
![I(t)=I_(f) (1-e^{(Rt)/(L) })](https://img.qammunity.org/2020/formulas/physics/college/u4k5zycpbcrdsk1tq0tmpth9y1yffheq84.png)
![(dI)/(dt) = I_(f)(d)/(dt)(1-e^{(-Rt)/(L) } )](https://img.qammunity.org/2020/formulas/physics/college/u7ww8dmjdi5mpvqjnivgf17j3lrveq7did.png)
---(5)
substituting (5) in (4)
----(6)
equating (1) and (6)
![I_(f)( 1- e^{-(Rt)/(L) } ) = I_(f)e^{-(Rt)/(L) }](https://img.qammunity.org/2020/formulas/physics/college/s29s2o2pnk788lu1aughy7shtxrfzptxbb.png)
![1 - e^{-(Rt)/(L) } = e^{-(Rt)/(L) }](https://img.qammunity.org/2020/formulas/physics/college/93jy3g8im36c1sv4ygkaffew3mnvqn8lfp.png)
![(1)/(2)= e^{-(Rt)/(L) }](https://img.qammunity.org/2020/formulas/physics/college/dru3vpn9upwgwml6jv4yrctyf4h0q4wk5t.png)
![t= -(L)/(R)ln(1)/(2)](https://img.qammunity.org/2020/formulas/physics/college/4rzn5vdst0nopdb1jkzktbxq74njsvl25x.png)
L= 4.3 mH
R= 16 Ω
t = 186.2 μs