Answer:
![\S^2_p =((18-1)(2.5)^2 +(18 -1)(2.3)^2)/(18 +18 -2)=5.77](https://img.qammunity.org/2020/formulas/mathematics/college/3oq9nm75z2uxfwf538b387lm12pnr0pxdk.png)
![S_p=2.402](https://img.qammunity.org/2020/formulas/mathematics/college/4xgux7hc8hsn4y1smp07ayt8bd2md0mmut.png)
![t=\frac{(12 -13)-(0)}{2.402\sqrt{(1)/(18)+(1)/(18)}}=-1.249](https://img.qammunity.org/2020/formulas/mathematics/college/zaum5l14ezebqo8t35v5ql6ybt1pamg89l.png)
![p_v =2*P(t_(34)<-1.249) =0.2201](https://img.qammunity.org/2020/formulas/mathematics/college/jbmcfihy3q5hq13u3ntfd83w98dmfigdex.png)
Step-by-step explanation:
When we have two independent samples from two normal distributions with equal variances we are assuming that
![\sigma^2_1 =\sigma^2_2 =\sigma^2](https://img.qammunity.org/2020/formulas/mathematics/college/5n0yzjl7c7jgtzbkrymyk51ejrc0poijde.png)
And the statistic is given by this formula:
![t=\frac{(\bar X_1 -\bar X_2)-(\mu_(1)-\mu_2)}{S_p\sqrt{(1)/(n_1)+(1)/(n_2)}}](https://img.qammunity.org/2020/formulas/mathematics/college/3cpbx7sucygam4861dhk2atnw27mio7nr2.png)
Where t follows a t distribution with
degrees of freedom and the pooled variance
is given by this formula:
![\S^2_p =((n_1-1)S^2_1 +(n_2 -1)S^2_2)/(n_1 +n_2 -2)](https://img.qammunity.org/2020/formulas/mathematics/college/mfzllf1covamdljpai2uohn381a4h0mc1s.png)
This last one is an unbiased estimator of the common variance
![\sigma^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ck7pk7v9y3nt3o8h72kaa662baqlb6r8j2.png)
The system of hypothesis on this case are:
Null hypothesis:
![\mu_1 = \mu_2](https://img.qammunity.org/2020/formulas/mathematics/college/3xcrsmkcwisq0jinsb3f9ekmpvqc54ylkz.png)
Alternative hypothesis:
![\mu_1 \\eq \mu_2](https://img.qammunity.org/2020/formulas/mathematics/college/4zrktkn2qoe65wsivlwvvsuuy8q01k3lju.png)
Or equivalently:
Null hypothesis:
![\mu_1 - \mu_2 = 0](https://img.qammunity.org/2020/formulas/mathematics/college/biqrl2lw0rn35tpwov7yd6fengpevaopn6.png)
Alternative hypothesis:
![\mu_1 -\mu_2 \\eq 0](https://img.qammunity.org/2020/formulas/mathematics/college/83o68b2dni8ez0r5k74y20wfi94gsnfr11.png)
Our notation on this case :
represent the sample size for group 1
represent the sample size for group 2
represent the sample mean for the group 1
represent the sample mean for the group 2
represent the sample standard deviation for group 1
represent the sample standard deviation for group 2
First we can begin finding the pooled variance:
![\S^2_p =((18-1)(2.5)^2 +(18 -1)(2.3)^2)/(18 +18 -2)=5.77](https://img.qammunity.org/2020/formulas/mathematics/college/3oq9nm75z2uxfwf538b387lm12pnr0pxdk.png)
And the deviation would be just the square root of the variance:
![S_p=2.402](https://img.qammunity.org/2020/formulas/mathematics/college/4xgux7hc8hsn4y1smp07ayt8bd2md0mmut.png)
And now we can calculate the statistic:
![t=\frac{(12 -13)-(0)}{2.402\sqrt{(1)/(18)+(1)/(18)}}=-1.249](https://img.qammunity.org/2020/formulas/mathematics/college/zaum5l14ezebqo8t35v5ql6ybt1pamg89l.png)
Now we can calculate the degrees of freedom given by:
![df=18+18-2=34](https://img.qammunity.org/2020/formulas/mathematics/college/vdmmpajpugzx6ht5ddx2qus3lzegrzv75m.png)
And now we can calculate the p value using the altenative hypothesis:
![p_v =2*P(t_(34)<-1.249) =0.2201](https://img.qammunity.org/2020/formulas/mathematics/college/jbmcfihy3q5hq13u3ntfd83w98dmfigdex.png)
If we compare the p value obtained and using the significance level assumed
we have
so we can conclude that we have enough evidence to FAIL to reject the null hypothesis.