117k views
5 votes
The free-fall acceleration on Mars is 3.7 m/s2.

(a) What length of pendulum has a period of 1.2 s on Earth? cm

(b) What length of pendulum would have a 1.2-s period on Mars? cm An object is suspended from a spring with force constant 10 N/m.

(c) Find the mass suspended from this spring that would result in a period of 1.2 s on Earth. kg

(d) Find the mass suspended from this spring that would result in a period of 1.2 s on Mars.

User Celita
by
4.9k points

2 Answers

1 vote

Final answer:

The length of a pendulum with a period of 1.2 s on Earth is approximately 36.95 cm, while on Mars it is around 16.99 cm. The mass suspended from a spring that would result in a period of 1.2 s on Earth is approximately 0.722 kg, and on Mars it is approximately 0.329 kg.

Step-by-step explanation:

(a) What length of pendulum has a period of 1.2 s on Earth? cm

Using the equation for the period of a pendulum, T = 2π √(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity, we can solve for L. Rearranging the equation, we have L = (T/2π)² * g.

Given that the free-fall acceleration on Earth is approximately 9.8 m/s², substituting the values into the equation, we have:

L = (1.2/2π)² * 9.8 = 0.3695 m = 36.95 cm



(b) What length of pendulum would have a 1.2-s period on Mars? cm

Using the same equation, L = (T/2π)² * g, we can substitute the values for the period and acceleration due to gravity on Mars:

L = (1.2/2π)² * 3.7 = 0.1699 m = 16.99 cm.



(c) Find the mass suspended from this spring that would result in a period of 1.2 s on Earth. kg

For a spring-mass system, the period is given by T = 2π √(m/k), where T is the period, m is the mass, and k is the spring constant. Rearranging the equation, we have m = (T/2π)² * k.

Given that the spring constant is 10 N/m, substituting the values into the equation, we have:

m = (1.2/2π)² * 10 = 0.722 kg.



(d) Find the mass suspended from this spring that would result in a period of 1.2 s on Mars. kg

Using the same equation, m = (T/2π)² * k, we can substitute the values for the period and spring constant:

m = (1.2/2π)² * 10 = 0.329 kg.

User Gogy
by
5.2k points
3 votes

Answer:

(a) The length of the pendulum on Earth is 36.8cm

(b) The length of the pendulum on Mars is 13.5cm

(c) Mass suspended from the spring on Earth is 0.37kg

(d) Mass suspended from the spring on Mars is 0.36kg

Step-by-step explanation:

Period = 1.2s, free fall acceleration on Earth = 9.8m/s^2, free fall acceleration on Mars = 3.7m/s^2

( a) Length of pendulum on Earth = [( period ÷ 2π)^2] × acceleration = (1.2 ÷ 2×3.142)^2 × 9.8 = 0.0365×9.8 = 0.358m = 35.8cm

(b) Length of the pendulum on Mars = (1.2÷2×3.142)^2 × 3.7 = 0.0365×3.7 = 0.135cm = 13.5m

(c) Mass suspended from the spring on Earth = (force constant×length in meter) ÷ acceleration = (10×0.358) ÷ 9.8 = 0.37kg

(d) Mass suspended from the spring on Mars = (10×0.135)÷3.7 = 0.36kg

User Ian Carter
by
5.5k points