Answer:
89.967°C
Step-by-step explanation:
According to Stefan-Boltzmann's law,
E = μΩA(Ts⁴ - Ti⁴)
Where,
Emissitivity, μ = 0.6,
Stefan-boltzmann's constant, Ω = 5.67 x 10^-8 W/m²K⁴
Surface area, A = 1.5 x 2.5 x 10-⁴ = 3.75 x 10-⁴ m²
Satellite temperature, Ti = -100°C = 173K
Power dissipated, E = 0.42 W
Since we're evaluating the temperature for both the top and bottom surfaces,
E = 2 x μΩA(Ts⁴ - Ti⁴)
0.42 = 2 x 0.6 x 3.75 x 10-⁴ x 5.67 x 10^-8 x (Ts⁴ - 173⁴)
0.0165 x 10^-12 = Ts⁴ - 8.957 x 10^8
Ts⁴ = 173.57 x 10^8
Taking 4th root of both sides,
Ts = 362.97 K
Ts = (362.97 - 273)°C
Ts = 89.967°C