54.3k views
2 votes
Rationalize the denominator and simplify.

Rationalize the denominator and simplify.-example-1
User Ercument
by
8.4k points

1 Answer

3 votes

Answer:


=(a+5-4√(a+1))/(a-3)

Explanation:

Given:


(√(a+1)-2)/(√(a+1)+2)

Rationalise the denominator.

Solution:

Simplify the expression.


=(√(a+1) -2)/(√(a+1) +2 )

Multiply numerator by both denominator and numerator.


=(√(a+1) -2)/(√(a+1)+2)* (√(a+1)-2)/(√(a+1)-2)


=((√(a+1)-2)(√(a+1)-2))/((√(a+1)+2)(√(a+1)-2))

Assume
√(a+1) =a\ and\ 2=b

Applying formula
(a-b)(a+b)=a^(2) -b^(2), so we get


=((√(a+1) -2)^(2))/((√(a+1))^(2) -2^(2)))


=((√(a+1))^(2) +2^(2)-2(√(a+1))(2))/((a+1)-4)


=((a+1) +4-4√(a+1))/(a+1-4)


=(a+5-4√(a+1))/(a-3)

Therefore, the simplification of the expression is given below.


=(a+5-4√(a+1))/(a-3)

User Lavanna
by
6.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories