54.3k views
2 votes
Rationalize the denominator and simplify.

Rationalize the denominator and simplify.-example-1
User Ercument
by
7.7k points

1 Answer

3 votes

Answer:


=(a+5-4√(a+1))/(a-3)

Explanation:

Given:


(√(a+1)-2)/(√(a+1)+2)

Rationalise the denominator.

Solution:

Simplify the expression.


=(√(a+1) -2)/(√(a+1) +2 )

Multiply numerator by both denominator and numerator.


=(√(a+1) -2)/(√(a+1)+2)* (√(a+1)-2)/(√(a+1)-2)


=((√(a+1)-2)(√(a+1)-2))/((√(a+1)+2)(√(a+1)-2))

Assume
√(a+1) =a\ and\ 2=b

Applying formula
(a-b)(a+b)=a^(2) -b^(2), so we get


=((√(a+1) -2)^(2))/((√(a+1))^(2) -2^(2)))


=((√(a+1))^(2) +2^(2)-2(√(a+1))(2))/((a+1)-4)


=((a+1) +4-4√(a+1))/(a+1-4)


=(a+5-4√(a+1))/(a-3)

Therefore, the simplification of the expression is given below.


=(a+5-4√(a+1))/(a-3)

User Lavanna
by
6.6k points