Answer:
the volume of the oxygen tank is
V ox = 0.844 m³
the volume of the nitrogen tank is
V ni = 2.359 m³
the final pressure is
P = 255. 534 kPa
Step-by-step explanation:
taking into account that
n= m/M
where
n= number of moles , m = mass, M = molecular weight
then
n oxigen = m ox / M ox = 6.0 kg/(32 gr/mol) *1000gr/kg = 187.5 moles
n nitrogen = m ni / M ni = 4.0 kg/(28 gr/mol) *1000gr/kg = 142.857 moles
from the ideal gas law
P*V=n*R*T
where P= absolute pressure, V= volume occupied by the gas , R= ideal gas constant= 8.314 J/(mol K) , T= absolute temperature
V=n*R*T/P
replacing values
for the oxygen tank , T ox= 25°C= 298 K , P = 550 kPa= 550000 Pa ,
V ox =n*R*T/P = 187.5 mol* 8.314 J/(mol K)* 298 K/ 550000 Pa = 0.844 m³
V ox = 0.844 m³
for the nitrogen tank, T ni= 298 K , P = 150000 Pa
V ni =n*R*T/P = 142.857 mol* 8.314 J/(mol K)* 298 K/ 150000 Pa = 2.359 m³
V ni = 2.359 m³
when the gases mix , they occupy a volume of
V = V ox + V ni = 0.844 m³ + 2.359 m³ = 3.203 m³
and total number of moles of gas of the mixture is
n = n oxigen + n nitrogen = 187.5 moles + 142.857 moles = 330.357 moles
therefore
P*V=n*R*T
P = n*R*T/V
replacing values
P = n*R*T/V = 330.357 mol*8.314 J/(mol K)* 298 K/ 3.203 m³ *1 kPa/1000Pa = 255. 534 kPa
P = 255. 534 kPa