Answer : The vapor pressure of
at
is 0.519 atm.
Explanation :
The Clausius- Clapeyron equation is :
![\ln ((P_2)/(P_1))=(\Delta H_(vap))/(R)* ((1)/(T_1)-(1)/(T_2))](https://img.qammunity.org/2020/formulas/chemistry/college/wiydki9p6ee5qxcwlwrixiux67x0m8rp5e.png)
where,
= vapor pressure of
at
= ?
= vapor pressure of
at normal boiling point = 1 atm
= temperature of
=
![57.8^oC=273+57.8=330.8K](https://img.qammunity.org/2020/formulas/chemistry/high-school/x3amaqerdsscu6rwnot7tpb3r5wzg9k3ht.png)
= normal boiling point of
=
![76.72^oC=273+76.72=349.72K](https://img.qammunity.org/2020/formulas/chemistry/high-school/xsbazdht91w4eri1ibjnd4mogey42lagjm.png)
= heat of vaporization
= 33.05 kJ/mole = 33050 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:
![\ln ((1atm)/(P_1))=(33050J/mole)/(8.314J/K.mole)* ((1)/(330.8K)-(1)/(349.72K))](https://img.qammunity.org/2020/formulas/chemistry/high-school/lvok395nsd87b5o8nvb17yehasbg1uh9a1.png)
![P_1=0.5219atm](https://img.qammunity.org/2020/formulas/chemistry/high-school/wbocplv69y1cd6if0vk1zt3j280bckd6ca.png)
Hence, the vapor pressure of
at
is 0.519 atm.