29.6k views
1 vote
Plzz help gahhhhh :\

Plzz help gahhhhh :\-example-1

1 Answer

4 votes

Answer:

The product of 'x' and 'y' is
\boxed 8.

Explanation:

Given:


\log_(5\sqrt5)125=x\\\\\log_(2\sqrt2)64=y

We need to determine the product of 'x' and 'y'.

Using the following logarithmic property:


\log_ab=(\log b)/(\log a)

Here,
a=5\sqrt5\ and\ 2\sqrt2


b=125\ and\ 64

So,
log_(5\sqrt5)125=(\log 125)/(\log 5√(5))\\\\log_(5\sqrt5)125=(\log 5^3)/(\log 5*5^(1/2)).......[\sqrt5=5^(1/2)]


log_(2\sqrt2)64=(\log 64)/(\log 2√(2))\\\\log_(2\sqrt2)64=(\log 2^6)/(\log 2*2^(1/2)).......[\sqrt2=2^(1/2)]

Now, we use another property of log and exponents.


\log a^m=m\log a\\a^m* a^n=a^(m+n)


log_(5\sqrt5)125=\frac{3\log 5}{\log 5^{1+{1/2}}}=\frac{3\log 5}{\log 5^{(3)/(2)}}=(3\log 5)/((3)/(2)\log 5)=2\\\\\\\\log_(2\sqrt2)64=\frac{6\log 2}{\log 2^{1+{1/2}}}=\frac{6\log 2}{\log 2^{(3)/(2)}}=(6\log 2)/((3)/(2)\log 2)=(12)/(3)=4

So,
x=2\ and\ y=4

The product of 'x' and 'y' =
2* 4=8

Therefore, the product of 'x' and 'y' is 8.

User Kohske
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.