29.6k views
1 vote
Plzz help gahhhhh :\

Plzz help gahhhhh :\-example-1

1 Answer

4 votes

Answer:

The product of 'x' and 'y' is
\boxed 8.

Explanation:

Given:


\log_(5\sqrt5)125=x\\\\\log_(2\sqrt2)64=y

We need to determine the product of 'x' and 'y'.

Using the following logarithmic property:


\log_ab=(\log b)/(\log a)

Here,
a=5\sqrt5\ and\ 2\sqrt2


b=125\ and\ 64

So,
log_(5\sqrt5)125=(\log 125)/(\log 5√(5))\\\\log_(5\sqrt5)125=(\log 5^3)/(\log 5*5^(1/2)).......[\sqrt5=5^(1/2)]


log_(2\sqrt2)64=(\log 64)/(\log 2√(2))\\\\log_(2\sqrt2)64=(\log 2^6)/(\log 2*2^(1/2)).......[\sqrt2=2^(1/2)]

Now, we use another property of log and exponents.


\log a^m=m\log a\\a^m* a^n=a^(m+n)


log_(5\sqrt5)125=\frac{3\log 5}{\log 5^{1+{1/2}}}=\frac{3\log 5}{\log 5^{(3)/(2)}}=(3\log 5)/((3)/(2)\log 5)=2\\\\\\\\log_(2\sqrt2)64=\frac{6\log 2}{\log 2^{1+{1/2}}}=\frac{6\log 2}{\log 2^{(3)/(2)}}=(6\log 2)/((3)/(2)\log 2)=(12)/(3)=4

So,
x=2\ and\ y=4

The product of 'x' and 'y' =
2* 4=8

Therefore, the product of 'x' and 'y' is 8.

User Kohske
by
6.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.