Answer:
I = 0.0674 kg.m²
Step-by-step explanation:
given,
mass = 13.5 Kg
torsion constant = k = 0.618 N.m
number of cycle = 28
time = 58.1 s
Time of one cycle
![T = (58.1)/(28)](https://img.qammunity.org/2020/formulas/physics/college/eewk1lynuhokxdhe364yvkuwr6eqimf98l.png)
![T =2.075\ s](https://img.qammunity.org/2020/formulas/physics/college/d3s3huxt5jluqydkn903i3bybxvhye5x7g.png)
we know,
![T = 2\pi\sqrt{(I)/(k)}](https://img.qammunity.org/2020/formulas/physics/college/khxgp9yx9opln418kwgvi8wfdxrmnj3d9q.png)
![I = k ((T)/(2\pi))^2](https://img.qammunity.org/2020/formulas/physics/college/kcajzaiacku2d0hwrslk6843ahpb7gr4o5.png)
![I =0.618* (T^2)/(4\pi^2)](https://img.qammunity.org/2020/formulas/physics/college/jorok15b9a6ssac3nrovtxfvjpoa88e60o.png)
![I =0.618* (2.075^2)/(4\pi^2)](https://img.qammunity.org/2020/formulas/physics/college/io61vmiey6bo7ojositdjwnu4kp6ylzs7d.png)
I = 0.0674 kg.m²
the rotational inertia of the object is equal to I = 0.0674 kg.m²