68.2k views
1 vote
The number of events is 29​, the number of trials is 298​, the claimed population proportion is​ 0.10, and the significance level is 0.05. Use technology to identify the test statistic for this hypothesis​ test, rounding to two decimal places.

User Gsquaredxc
by
5.6k points

1 Answer

2 votes

Answer:


z=\frac{0.0973 -0.1}{\sqrt{(0.1(1-0.1))/(298)}}=-0.155


p_v =2*P(Z<-0.155)=0.877

And we can use excel to find the p value like this: "=2*NORM.DIST(-0.155;0;1;TRUE)"

So the p value obtained was a very high value and using the significance level given
\alpha=0.05 we have
p_v>\alpha so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of interest is not significantly different from 0.1 .

Explanation:

1) Data given and notation

n=298 represent the random sample taken

X=29 represent the events claimed


\hat p=(29)/(298)=0.0973 estimated proportion


p_o=0.1 is the value that we want to test


\alpha=0.05 represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)


p_v represent the p value (variable of interest)

2) Concepts and formulas to use

We need to conduct a hypothesis in order to test the claim that the proportion is 0.1 or no.:

Null hypothesis:
p=0.1

Alternative hypothesis:
p \\eq 0.1

When we conduct a proportion test we need to use the z statistic, and the is given by:


z=\frac{\hat p -p_o}{\sqrt{(p_o (1-p_o))/(n)}} (1)

The One-Sample Proportion Test is used to assess whether a population proportion
\hat p is significantly different from a hypothesized value
p_o.

3) Calculate the statistic

Since we have all the info requires we can replace in formula (1) like this:


z=\frac{0.0973 -0.1}{\sqrt{(0.1(1-0.1))/(298)}}=-0.155

4) Statistical decision

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.

The next step would be calculate the p value for this test.

Since is a bilateral test the p value would be:


p_v =2*P(Z<-0.155)=0.877

And we can use excel to find the p value like this: "=2*NORM.DIST(-0.155;0;1;TRUE)"

So the p value obtained was a very high value and using the significance level given
\alpha=0.05 we have
p_v>\alpha so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of interest is not significantly different from 0.1 .

We can do the test also in R with the following code:

> prop.test(29,298,p=0.1,alternative = c("two.sided"),conf.level = 1-0.05,correct = FALSE)

User Sigmatics
by
6.5k points