Answer:
21.67 rad/s²
208.36538 N
Step-by-step explanation:
= Final angular velocity =
![(1)/(6)78=13\ rad/s](https://img.qammunity.org/2020/formulas/physics/college/36u8skxo9indukhqdufaadh5clrdri4ghv.png)
= Initial angular velocity = 78 rad/s
= Angular acceleration
= Angle of rotation
t = Time taken
r = Radius = 0.13
I = Moment of inertia = 1.25 kgm²
From equation of rotational motion
![\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=(\omega_f-\omega_i)/(t)\\\Rightarrow \alpha=(13-78)/(3)\\\Rightarrow \alpha=-21.67\ rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/8shnhybg5uiq7mh6f4t3dp62q62zrizdvp.png)
The magnitude of the angular deceleration of the cylinder is 21.67 rad/s²
Torque is given by
![\tau=I\alpha\\\Rightarrow \tau=1.25* -21.67\\\Rightarrow \tau=-27.0875](https://img.qammunity.org/2020/formulas/physics/college/k4jqpxndzsdqten37ek6kw0cxbbuk7kb2p.png)
Frictional force is given by
![F=(\tau)/(r)\\\Rightarrow F=(-27.0875)/(0.13)\\\Rightarrow F=-208.36538\ N](https://img.qammunity.org/2020/formulas/physics/college/u62hbt7ateni5u2slsnzk007rmy2dzuump.png)
The magnitude of the force of friction applied by the brake shoe is 208.36538 N