Answer:
The midpoint of segment AB is
![\therefore M(x,y)=((5)/(2), -4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lkhmybiw2kttd8lu2hf1df6t3ywhirhlr1.png)
Explanation:
Given:
Let the end points be
point A( x₁ , y₁) ≡ ( -9 , -20)
point B( x₂ , y₂) ≡ (14 , 12)
M( x , y ) be the Mid point of AB
To Find:
M( x , y ) = ?
Solution:
If M is the midpoint of segment AB then by midpoint formula the M coordinates are given by,
![Mid\ pointM(x,y)=((x_(1)+x_(2) )/(2), (y_(1)+y_(2) )/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ekzib5bke3o6aw4rc2yygor6lss8xd7n7a.png)
On substituting the values in above formula we get
![M(x,y)=((-9+14 )/(2), (-20+12 )/(2))=((5)/(2), (-8)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qchbpftubx8v6bt1teicad9zxno7t3z0sd.png)
![\therefore M(x,y)=((5)/(2), -4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lkhmybiw2kttd8lu2hf1df6t3ywhirhlr1.png)