Answer:
ΔG = 199.2 kJ
Step-by-step explanation:
Let's consider the following reaction.
Ca₃(PO₄)₂(s) → 3 Ca²⁺(aq) + 2 PO₄³⁻(aq)
We can calculate the standard Gibbs free energy of reaction (ΔG°) using the following expression.
ΔG° = 3 mol × ΔG°f(Ca²⁺(aq)) + 2 mol × ΔG°f(PO₄³⁻(aq) ) - 1 mol × ΔG°f(Ca₃(PO₄)₂(s) )
ΔG° = 3 mol × (-553.6 kJ/mol) + 2 mol × (-1013 kJ/mol) - 1 mol × (-3899.0 kJ/mol)
ΔG° = 212.2 kJ
This is the standard Gibbs free energy per mole of reaction.
We can calculate the Gibbs free energy of reaction (ΔG) using the following expression.
ΔG = ΔG° + R.T.lnQ
where,
R: ideal gas constant
T: absolute temperature (25.0 + 273.15 = 298.2 K)
Q: reaction quotient
ΔG = ΔG° + R.T.ln [Ca²⁺]³.[PO₄³⁻]²
ΔG = 212.2 kJ/mol + (8.314 × 10⁻³ kJ/K.mol) × 298.2 K × ln (0.528³ × 0.189²)
ΔG = 199.2 kJ