Answer:
![g(x)=(x-12)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6k4b7w5d5kx54mwmdlmmoybrsw6aduwbsb.png)
Explanation:
Alright, lets get started.
![f(x)=4x+12](https://img.qammunity.org/2020/formulas/mathematics/high-school/tpii829kek54rw2zkl5b9pc7u8i32u9ixf.png)
Suppose y is f(x), then
![y=4x+12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3nj66xbmjm67huk0fne86eijkkw7gsdlci.png)
For finding inverse function, lets interchange the variables x and y
![x=4y+12](https://img.qammunity.org/2020/formulas/mathematics/high-school/gm276pmgva785xxvwd7dcgmj828y60b68d.png)
Subtracting 12 form both sides
![x-12=4y+12-12](https://img.qammunity.org/2020/formulas/mathematics/high-school/nb6g2y0a76jm4awiwmr7ku52kdxa0not32.png)
![x-12=4y](https://img.qammunity.org/2020/formulas/mathematics/high-school/kvd4gtfx84je39md45ne0bqu74xol7pxtl.png)
Dividing 4 in both sides
![(x-12)/(4)=y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dzeci0yn14lyjzv3qoq4s70mh1yni6eobo.png)
![y=(x-12)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/cpuiisbm45zwvzp057ebsyvizeixczti2x.png)
Hence the inverse of f(x) is
![(x-12)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pclddnmuamxofvol2g5sswi0a08looq786.png)
..................Answer
Hope it will help :)