Answer:
The width of rectangle is
or
![8(4)/(13)\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hampn0joejcfai44kkcu6lhj0czpfc2yzd.png)
Explanation:
we know that
The perimeter of rectangle is equal to
![P=2(L+W)](https://img.qammunity.org/2020/formulas/mathematics/high-school/zp0cq8kh3lxm1bcfeu0a3nf7jca129894r.png)
where
L is the length of rectangle
W is the width of rectangle
we have
![P=26\ cm\\L=(x+4)\ cm\\W=12x\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ifpzfq277gwmqmjgzynt2ywbxg857c9m1x.png)
substitute
![26=2(x+4+12x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5g0n9gzyiikyzfrbjhxkhdcqtymvk60979.png)
solve for x
![26=2(13x+4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yrqumdzzd41ds987wvw8fdpbk8hlcekx38.png)
![26=26x+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h2qggi5kdz2j1oa2mzfmenin2zngu14ry9.png)
![26x=26-8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pebyb2v4wz4lf1mgi5mnkq8f1d0rtz69xw.png)
![26x=18](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7h7daj5adbxfeyq2ggi942o5v833jeo33k.png)
![x=(18)/(26)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kogav4j6glyf2y7gq3s48jhcvy7o2e42z9.png)
simplify
![x=(9)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ep127ujtc0wddcebxlipxdajn4zq3hjcy.png)
Find the width of rectangle
![W=12x\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/km3c3z1r5dw0ziux0tthvdqcp9o4vas7rg.png)
substitute the value of x
![W=12((9)/(13))=(108)/(13)\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lc9e4c9buj22gky7yhsaajp5yykeea1yds.png)
Convert to mixed number
![(108)/(13)\ cm=(104)/(13)+(4)/(13)=8(4)/(13)\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lw6b45jwfobftb25qq0etztrmy3pfkw3kb.png)