Answer:
145.52137 m/s
1.4 m
0.7 m
60.6339 Hz
121.2678 Hz
Step-by-step explanation:
T = Tension = 120 N
= Linear density =
![(m)/(L)](https://img.qammunity.org/2020/formulas/physics/college/ytokzr863pbisdg70b8xveux7nfc7wj8hk.png)
m = Mass of wire = 6.8 g
L = Length of wire = 1.2 m
n = Number of loops
Velocity is given by
![v=\sqrt{(T)/(\mu)}\\\Rightarrow v=\sqrt{(T)/((m)/(L))}\\\Rightarrow v=\sqrt{(120)/((6.8* 10^(-3))/(1.2))}\\\Rightarrow v=145.52137\ m/s](https://img.qammunity.org/2020/formulas/physics/college/39xargwswukrtl0vt5463hogeoho2xljai.png)
The speed of waves on the wire is 145.52137 m/s
Wavelength is given by
![\lambda=(2L)/(n)\\\Rightarrow \lambda=(2* 1.2)/(1)\\\Rightarrow \lambda=1.4\ m](https://img.qammunity.org/2020/formulas/physics/college/4ar4jm00idz3qe8ko4mnfkeuzu8kw5qeh9.png)
The wavelength of the waves that produces one-loop standing waves is 1.4 m
![\lambda=(2L)/(n)\\\Rightarrow \lambda=(2* 1.2)/(2)\\\Rightarrow \lambda=0.7\ m](https://img.qammunity.org/2020/formulas/physics/college/8ztovvx2wb9ioudxo99hnw01y92o0135ra.png)
The wavelength of the waves that produces two-loop standing waves is 0.7 m
Frequency is given by
![f=(nv)/(2L)\\\Rightarrow f=(1* 145.52137)/(2* 1.2)\\\Rightarrow f=60.6339\ Hz](https://img.qammunity.org/2020/formulas/physics/college/own5i5qzd555eorr5gr6y04pe794tjcguf.png)
The frequency of the waves that produces one-loop standing waves is 60.6339 Hz
![f=(nv)/(2L)\\\Rightarrow f=(2* 145.52137)/(2* 1.2)\\\Rightarrow f=121.2678\ Hz](https://img.qammunity.org/2020/formulas/physics/college/jlcydlvuv8vvm6vzgv5m8nkcjvjd40jiiu.png)
The frequency of the waves that produces two-loop standing waves is 121.2678 Hz